IIA Library IIG Library  

GPS and GNSS technology in geosciences / edited by George P. Petropoulos and Prashant K. Srivastava.

Contributor(s): Material type: TextTextPublisher: Amsterdam, Netherlands ; Oxford, England ; Cambridge, Massachusetts : Elsevier, [2021]Copyright date: ©2021Description: 1 online resource (xiii, 452 pages) : illustrationsContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780128186176
Subject(s): DDC classification:
  • 550.28 23
LOC classification:
  • QE33.2.R4 .G67 2021
Contents:
Front Cover -- GPS and GNSS Technology in Geosciences -- GPS and GNSS Technology in Geosciences -- Contents -- Contributors -- Foreword -- I - General introduction to GPS/GNSS technology -- 1 - Introduction to GPS/GNSS technology -- 1. Background -- 2. Major segments of GPS -- 3. Functioning of GPS -- 3.1 Pseudorange -- 3.2 Carrier-phase measurement -- 3.3 GPS broadcast message, ephemeris, and almanac -- 4. GPS errors -- 4.1 Satellite and receiver clock errors -- 4.2 Multipath error -- 4.3 Ionospheric delay -- 4.4 Tropospheric delay -- 4.5 GPS ephemeris errors -- 4.6 Other limitations -- 5. GPS technologies -- 6. Global Navigation Satellite System -- 6.1 NAVSTAR -- 6.2 GLONASS -- 6.3 Galileo -- 6.4 Compass/BeiDou -- 6.5 Quasi-Zenith Satellite System -- 6.6 IRNSS/NavIC -- 7. Applications of GPS/GNSS -- 7.1 Navigation -- 7.2 Military services -- 7.3 Geodetic control surveys -- 7.4 Cadastral survey -- 7.5 Photogrammetry, remote sensing, and GIS -- 7.6 Ground truthing and validation -- 7.7 Disaster, response, and mitigation -- 7.8 Integration of GPS with mobile and google maps and GPS -- 8. Conclusions -- References -- Further reading -- 2 - Fundamentals of structural and functional organization of GNSS -- 1. GNSS structural organization -- 1.1 Introduction -- 1.2 Some notation and definitions -- 1.3 GNSS global coverage -- 1.4 GNSS regional coverage -- 1.5 Three main GNSS segments -- 1.6 Navigation using one satellite -- 1.7 2D navigation using two satellites -- 1.8 2D navigation using three satellite -- 1.8.1 The main idea of an iterative algorithm to compensate for the systematic error Δρ -- 1.8.2 Inaccurate vehicle clock synchronization -- 1.9 3D GNSS using N satellites -- 1.10 Summary and conclusions on the topic structural organization of GNSS -- 2. GNSS functional organization -- 2.1 GNSS functional principle -- 2.1.1 Systems of coordinates.
2.1.2 Time systems -- 2.1.3 Factors affecting accuracy -- 2.1.4 GNSS accuracy improvement -- 2.2 GNSS signal structure, encoding, and frequency -- 2.3 Pseudoranges -- 2.4 GNSS positioning -- 2.5 Differential GNSS architecture -- 2.5.1 Local Area Differential GNSS positioning -- 2.5.2 Regional Area Differential GNSS positioning -- 2.5.3 Wide Area Differential GNSS positioning -- 2.6 Summary and conclusions on the topic functional organization of GNSS -- References -- References additional -- 3 - Security of GNSS -- 1. Introduction -- 2. GNSS interference -- 3. GNSS jamming -- 4. GNSS self-jamming -- 5. GNSS meaconing -- 6. GNSS spoofing -- 6.1 The cloud-based GNSS positioning -- 7. The cloud-based GNSS spoofing detection -- 8. Some notation and definitions for detection of spoofing -- 8.1 Dual-antenna spoofing detector -- 8.2 Measuring the distance between antennas in normal navigation mode -- 8.3 Measurement the distance between antennas in spoofing mode -- 8.3.1 The decisive rule 1 -- 8.4 Spoofing detection by the dispersion of the pseudorange difference of two antennas -- 8.4.1 The decisive rule 2 -- 8.4.2 Discussion of the decisive rules -- 8.5 Single-antenna spoofing detector -- 8.6 Measuring the distance between two positions of single antenna in normal mode -- 8.7 Measurement of spacing between two positions of single antenna in spoofing mode -- 8.8 The decisive rule -- 9. GNSS spoofer DIY (Do It Yourself) -- 10. GNSS self-spoofing -- 11. Briefly about antispoofing -- 12. Summary and conclusions -- 13. Postscript -- References -- II - GPS/GNSS concept and algorithms -- 4 - GNSS multipath errors and mitigation techniques -- 1. Introduction -- 2. Multipath errors and their characteristics -- 2.1 Code multipath error -- 2.2 Phase multipath error, SNR/CNR, and their relationship -- 2.2.1 Case 1: no (constructive) carrier-phase multipath effect.
2.2.2 Case 2: maximum carrier-phase multipath effect -- 2.2.3 Case 3: no (destructive) carrier-phase multipath effect -- 2.3 Characteristics of multipath errors -- 3. Multipath mitigation techniques -- 3.1 Hardware-based multipath mitigation techniques -- 3.2 Software-based multipath mitigation techniques -- 3.2.1 Stochastic modeling -- 3.2.1.1 Elevation angle of satellite -- 3.2.1.2 Signal-to-noise ratio or carrier-to-noise ratio -- 3.2.2 Carrier-phase multipath reconstruction using the correlations of carrier-phase multipath with SNR -- 3.2.3 Sidereal day-to-day repeatability analysis -- 3.2.4 Antenna array -- 3.2.5 Ray tracing method -- 3.2.6 Comparison and discussion on software-based multipath mitigation techniques -- 4. Summary -- References -- 5 - Antenna technology for GNSS -- 1. Introduction -- 1.1 Line-of-Sight and reflected signals -- 1.2 Circular polarization-mitigating the multipath -- 2. Key antenna parameters for GNSS receivers -- 2.1 Radiation pattern and antenna gain -- 2.2 Axial ratio -- 2.3 Performance versus cost -- 3. Antennas for GNSS -- 3.1 Microstrip patch antennas -- 3.2 Sequentially rotated arrays -- 3.3 3D antenna structures: quadrifilar helix and electromagnetic dipole -- 3.4 Omnidirectional GNSS antennas -- 3.5 Choke rings, EBG, and low-angle signals -- 4. Final remarks -- References -- 6 - Probing the tropospheric water vapor using GPS -- 1. Introduction -- 1.1 Motivation for water vapor study -- 1.2 Navigation satellite system and GPS -- 2. GPS error sources -- 2.1 Atmospheric errors -- 3. Water vapor retrieval using GPS -- 3.1 Network GPS data processing -- 3.2 PPP GPS data processing -- 3.3 GPS datasets used for perceptible water vapor estimation -- 3.4 Computation of PWV from ZTD -- 3.5 Future scope and challenges -- 4. Conclusions -- Acknowledgment -- References -- 7 - Probing the upper atmosphere using GPS.
1. Introduction -- 1.1 Quiescent ionosphere -- 1.2 Geomagnetic storms -- 1.3 Equatorial spread-F -- 1.4 Solar eclipse -- 1.5 Earthquake -- 2. Conclusions -- 3. Recommendations -- Acknowledgment -- References -- 8 - Video-based navigation using convolutional neural networks -- 1. Introduction -- 2. Proposed Super Navigation method -- 2.1 Navigation problem as an image classification problem -- 2.2 Collecting the data -- 2.3 Generating the Super Navigation image -- 2.3.1 Super Navigation image design option: number of frames -- 2.3.2 Super Navigation image design option: frame selection -- 2.4 Selecting the CNN model -- 2.5 Training the CNN model -- 2.6 Inferencing to predict the navigation direction -- 3. Implementation on low-power CNN accelerators -- 3.1 GnetFC model -- 4. Experimental results -- 4.1 Indoor navigation -- 4.1.1 Data collection and labeling -- 4.1.2 Generating Super Navigation images -- 4.1.3 Model training and accuracy comparison -- 4.2 Outdoor navigation -- 4.2.1 Data collection and labeling -- 4.2.2 Generating Super Navigation images -- 4.2.3 Model training and accuracy comparison -- 5. Conclusion and future work -- References -- III - Applications of GPS/GNSS -- 9 - GNSS monitoring natural and anthropogenic phenomena -- 1. Introduction -- 2. Earthquakes -- 3. Landslides monitoring -- 4. Crustal deformations -- 5. Challenges -- 6. Summary -- References -- 10 - Environmental sensing: a review of approaches using GPS/GNSS -- 1. Introduction -- 2. Data collection -- 2.1 Smartphones as sensors -- 2.2 Specialized devices -- 3. Data organization/analysis -- 4. Data visualization -- 5. Applications -- 5.1 Water and soil monitoring/pollution -- 5.2 Air monitoring/pollution -- 5.3 Noise monitoring/pollution -- 6. Discussion and concluding remarks -- References -- 11 - GNSS-derived data for the study of the ionosphere -- 1. The ionosphere.
2. Ionosphere monitoring -- 3. Ionosphere modeling -- 4. TEC from GNSS -- 5. GNSS TEC for ionosphere studies -- 6. Final remarks -- Acknowledgement -- References -- 12 - Automatic pattern recognition and GPS/GNSS technology in marine digital terrain model -- 1. Introduction -- 2. Datasets description -- 3. Methodology implementation -- 4. The application of pattern recognition in marine pollution and structural studies -- 5. Conclusions -- Acknowledgment -- References -- 13 - Monitoring ionospheric scintillations with GNSS in South America: scope, results, and challenges -- 1. Introduction -- 1.1 Monitoring networks -- 2. Aspects of the climatology of ionospheric scintillations and their effects on GNSS-based applications in South America -- 2.1 Aspects of the climatology of scintillations in South America -- 2.1.1 Summary remarks of the climatology of scintillations in South America -- 2.2 Experimental setup to demonstrate effects of scintillations on field applications -- 3. Statistical modeling of amplitude scintillation -- 3.1 Discussions on application of statistical modeling of amplitude scintillation to mitigate effects of scintillations on GNSS ... -- 4. Low-cost instrumentation for ionospheric plasma bubbles monitoring -- 4.1 Experimental validation -- 4.2 Other initiatives for low-cost receiver design -- 5. Discussion -- 6. Final remarks &amp -- future outlook -- Acknowledgments -- References -- 14 - The versatility of GNSS observations in hydrological studies -- 1. Introduction -- 2. Materials and methods -- 2.1 Study area -- 2.2 Datasets -- 2.2.1 GNSS datasets -- 2.2.2 Global Land Data Assimilation System -- 2.2.3 GRACE mascon solution -- 2.2.4 Global Precipitation Climatology Centre -- 2.3 Methodology -- 2.3.1 Hydrologic loading -- 2.3.2 GNSS-derived integrated water vapor -- 2.3.3 GNSS-based drought indicator -- 3. Results.
3.1 Land water storage prediction using observed radial displacements.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode
Books Mumbai General Stack 528.8/PET (Browse shelf(Opens below)) Available 009209

Front Cover -- GPS and GNSS Technology in Geosciences -- GPS and GNSS Technology in Geosciences -- Contents -- Contributors -- Foreword -- I - General introduction to GPS/GNSS technology -- 1 - Introduction to GPS/GNSS technology -- 1. Background -- 2. Major segments of GPS -- 3. Functioning of GPS -- 3.1 Pseudorange -- 3.2 Carrier-phase measurement -- 3.3 GPS broadcast message, ephemeris, and almanac -- 4. GPS errors -- 4.1 Satellite and receiver clock errors -- 4.2 Multipath error -- 4.3 Ionospheric delay -- 4.4 Tropospheric delay -- 4.5 GPS ephemeris errors -- 4.6 Other limitations -- 5. GPS technologies -- 6. Global Navigation Satellite System -- 6.1 NAVSTAR -- 6.2 GLONASS -- 6.3 Galileo -- 6.4 Compass/BeiDou -- 6.5 Quasi-Zenith Satellite System -- 6.6 IRNSS/NavIC -- 7. Applications of GPS/GNSS -- 7.1 Navigation -- 7.2 Military services -- 7.3 Geodetic control surveys -- 7.4 Cadastral survey -- 7.5 Photogrammetry, remote sensing, and GIS -- 7.6 Ground truthing and validation -- 7.7 Disaster, response, and mitigation -- 7.8 Integration of GPS with mobile and google maps and GPS -- 8. Conclusions -- References -- Further reading -- 2 - Fundamentals of structural and functional organization of GNSS -- 1. GNSS structural organization -- 1.1 Introduction -- 1.2 Some notation and definitions -- 1.3 GNSS global coverage -- 1.4 GNSS regional coverage -- 1.5 Three main GNSS segments -- 1.6 Navigation using one satellite -- 1.7 2D navigation using two satellites -- 1.8 2D navigation using three satellite -- 1.8.1 The main idea of an iterative algorithm to compensate for the systematic error Δρ -- 1.8.2 Inaccurate vehicle clock synchronization -- 1.9 3D GNSS using N satellites -- 1.10 Summary and conclusions on the topic structural organization of GNSS -- 2. GNSS functional organization -- 2.1 GNSS functional principle -- 2.1.1 Systems of coordinates.

2.1.2 Time systems -- 2.1.3 Factors affecting accuracy -- 2.1.4 GNSS accuracy improvement -- 2.2 GNSS signal structure, encoding, and frequency -- 2.3 Pseudoranges -- 2.4 GNSS positioning -- 2.5 Differential GNSS architecture -- 2.5.1 Local Area Differential GNSS positioning -- 2.5.2 Regional Area Differential GNSS positioning -- 2.5.3 Wide Area Differential GNSS positioning -- 2.6 Summary and conclusions on the topic functional organization of GNSS -- References -- References additional -- 3 - Security of GNSS -- 1. Introduction -- 2. GNSS interference -- 3. GNSS jamming -- 4. GNSS self-jamming -- 5. GNSS meaconing -- 6. GNSS spoofing -- 6.1 The cloud-based GNSS positioning -- 7. The cloud-based GNSS spoofing detection -- 8. Some notation and definitions for detection of spoofing -- 8.1 Dual-antenna spoofing detector -- 8.2 Measuring the distance between antennas in normal navigation mode -- 8.3 Measurement the distance between antennas in spoofing mode -- 8.3.1 The decisive rule 1 -- 8.4 Spoofing detection by the dispersion of the pseudorange difference of two antennas -- 8.4.1 The decisive rule 2 -- 8.4.2 Discussion of the decisive rules -- 8.5 Single-antenna spoofing detector -- 8.6 Measuring the distance between two positions of single antenna in normal mode -- 8.7 Measurement of spacing between two positions of single antenna in spoofing mode -- 8.8 The decisive rule -- 9. GNSS spoofer DIY (Do It Yourself) -- 10. GNSS self-spoofing -- 11. Briefly about antispoofing -- 12. Summary and conclusions -- 13. Postscript -- References -- II - GPS/GNSS concept and algorithms -- 4 - GNSS multipath errors and mitigation techniques -- 1. Introduction -- 2. Multipath errors and their characteristics -- 2.1 Code multipath error -- 2.2 Phase multipath error, SNR/CNR, and their relationship -- 2.2.1 Case 1: no (constructive) carrier-phase multipath effect.

2.2.2 Case 2: maximum carrier-phase multipath effect -- 2.2.3 Case 3: no (destructive) carrier-phase multipath effect -- 2.3 Characteristics of multipath errors -- 3. Multipath mitigation techniques -- 3.1 Hardware-based multipath mitigation techniques -- 3.2 Software-based multipath mitigation techniques -- 3.2.1 Stochastic modeling -- 3.2.1.1 Elevation angle of satellite -- 3.2.1.2 Signal-to-noise ratio or carrier-to-noise ratio -- 3.2.2 Carrier-phase multipath reconstruction using the correlations of carrier-phase multipath with SNR -- 3.2.3 Sidereal day-to-day repeatability analysis -- 3.2.4 Antenna array -- 3.2.5 Ray tracing method -- 3.2.6 Comparison and discussion on software-based multipath mitigation techniques -- 4. Summary -- References -- 5 - Antenna technology for GNSS -- 1. Introduction -- 1.1 Line-of-Sight and reflected signals -- 1.2 Circular polarization-mitigating the multipath -- 2. Key antenna parameters for GNSS receivers -- 2.1 Radiation pattern and antenna gain -- 2.2 Axial ratio -- 2.3 Performance versus cost -- 3. Antennas for GNSS -- 3.1 Microstrip patch antennas -- 3.2 Sequentially rotated arrays -- 3.3 3D antenna structures: quadrifilar helix and electromagnetic dipole -- 3.4 Omnidirectional GNSS antennas -- 3.5 Choke rings, EBG, and low-angle signals -- 4. Final remarks -- References -- 6 - Probing the tropospheric water vapor using GPS -- 1. Introduction -- 1.1 Motivation for water vapor study -- 1.2 Navigation satellite system and GPS -- 2. GPS error sources -- 2.1 Atmospheric errors -- 3. Water vapor retrieval using GPS -- 3.1 Network GPS data processing -- 3.2 PPP GPS data processing -- 3.3 GPS datasets used for perceptible water vapor estimation -- 3.4 Computation of PWV from ZTD -- 3.5 Future scope and challenges -- 4. Conclusions -- Acknowledgment -- References -- 7 - Probing the upper atmosphere using GPS.

1. Introduction -- 1.1 Quiescent ionosphere -- 1.2 Geomagnetic storms -- 1.3 Equatorial spread-F -- 1.4 Solar eclipse -- 1.5 Earthquake -- 2. Conclusions -- 3. Recommendations -- Acknowledgment -- References -- 8 - Video-based navigation using convolutional neural networks -- 1. Introduction -- 2. Proposed Super Navigation method -- 2.1 Navigation problem as an image classification problem -- 2.2 Collecting the data -- 2.3 Generating the Super Navigation image -- 2.3.1 Super Navigation image design option: number of frames -- 2.3.2 Super Navigation image design option: frame selection -- 2.4 Selecting the CNN model -- 2.5 Training the CNN model -- 2.6 Inferencing to predict the navigation direction -- 3. Implementation on low-power CNN accelerators -- 3.1 GnetFC model -- 4. Experimental results -- 4.1 Indoor navigation -- 4.1.1 Data collection and labeling -- 4.1.2 Generating Super Navigation images -- 4.1.3 Model training and accuracy comparison -- 4.2 Outdoor navigation -- 4.2.1 Data collection and labeling -- 4.2.2 Generating Super Navigation images -- 4.2.3 Model training and accuracy comparison -- 5. Conclusion and future work -- References -- III - Applications of GPS/GNSS -- 9 - GNSS monitoring natural and anthropogenic phenomena -- 1. Introduction -- 2. Earthquakes -- 3. Landslides monitoring -- 4. Crustal deformations -- 5. Challenges -- 6. Summary -- References -- 10 - Environmental sensing: a review of approaches using GPS/GNSS -- 1. Introduction -- 2. Data collection -- 2.1 Smartphones as sensors -- 2.2 Specialized devices -- 3. Data organization/analysis -- 4. Data visualization -- 5. Applications -- 5.1 Water and soil monitoring/pollution -- 5.2 Air monitoring/pollution -- 5.3 Noise monitoring/pollution -- 6. Discussion and concluding remarks -- References -- 11 - GNSS-derived data for the study of the ionosphere -- 1. The ionosphere.

2. Ionosphere monitoring -- 3. Ionosphere modeling -- 4. TEC from GNSS -- 5. GNSS TEC for ionosphere studies -- 6. Final remarks -- Acknowledgement -- References -- 12 - Automatic pattern recognition and GPS/GNSS technology in marine digital terrain model -- 1. Introduction -- 2. Datasets description -- 3. Methodology implementation -- 4. The application of pattern recognition in marine pollution and structural studies -- 5. Conclusions -- Acknowledgment -- References -- 13 - Monitoring ionospheric scintillations with GNSS in South America: scope, results, and challenges -- 1. Introduction -- 1.1 Monitoring networks -- 2. Aspects of the climatology of ionospheric scintillations and their effects on GNSS-based applications in South America -- 2.1 Aspects of the climatology of scintillations in South America -- 2.1.1 Summary remarks of the climatology of scintillations in South America -- 2.2 Experimental setup to demonstrate effects of scintillations on field applications -- 3. Statistical modeling of amplitude scintillation -- 3.1 Discussions on application of statistical modeling of amplitude scintillation to mitigate effects of scintillations on GNSS ... -- 4. Low-cost instrumentation for ionospheric plasma bubbles monitoring -- 4.1 Experimental validation -- 4.2 Other initiatives for low-cost receiver design -- 5. Discussion -- 6. Final remarks &amp -- future outlook -- Acknowledgments -- References -- 14 - The versatility of GNSS observations in hydrological studies -- 1. Introduction -- 2. Materials and methods -- 2.1 Study area -- 2.2 Datasets -- 2.2.1 GNSS datasets -- 2.2.2 Global Land Data Assimilation System -- 2.2.3 GRACE mascon solution -- 2.2.4 Global Precipitation Climatology Centre -- 2.3 Methodology -- 2.3.1 Hydrologic loading -- 2.3.2 GNSS-derived integrated water vapor -- 2.3.3 GNSS-based drought indicator -- 3. Results.

3.1 Land water storage prediction using observed radial displacements.

Description based on print version record.

There are no comments on this title.

to post a comment.